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1. INTRODUCTION AND DESCRIPTION OF THE RESULT

Let K(8, t) be a real valued function defined on S X T where S = {a, b)
and T = (c, d) are bounded intervals of the real line. More exact requirements
on K{s, t) will be specified later. In this paper we consider the problem
of best uniform approximation of a continuous function z(s) on S by func­
tions of the form

yes) = t K(s, t) u(t) dt,

where u(t) is subject to the inequality constraint

(1.1)

I u(t)1 :c'(: I

Thus we wish to minimize

for all t in T. (1.2)

max Iz(s) - JK(s, t) u(t) dt I
SES T

(1.3)

under the restriction (1.2).
Problems of this type arise in control theory where (1.1) defines a control

operator with u(t) as control function and Z(8) as the "desired state"
(cf. [2]).

Our main result is the following. We show that under suitable assumptions
on the kernel K(s, t) there is a unique solution fi of the restricted approxi­
mation problem such that fi is finitely bang-bang:

fi(t) = e(-I)" for t E [11'-1 ,t,,); r = 1,... , n + 1,
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(1.4)
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for some E = +1 or -1, some n :): 1 and some partition
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of the interval T.
In order to obtain such a result we require that K(s, t) is strongly sign-

regular (SSR), i.e., that there exists a sequence of numbers Ern either 1
or -1 such that

(1.5)

for all a < $1 .. , Sm < b, C < t1 < ... < tm < d. Kernels of this type have
well-known variation diminishing properties which we use in the proof of
our result.

It is possible to apply our theorem to a broad class of control problems,
for example to the boundary control of the heat equation. For this class of
problems we can derive the finite bang-bang theorem of Karafiat [4J in
a much simpler way. A detailled discussion of this result and related appli­
cations will be given elsewhere.

2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

In order to give a simple presentation of the results we assume that Kts, t)
is continuous on the closure of S x T. This ensures that (1.1) defines a
continuous linear operator from the space Loo(T) of bounded measurable
functions on T into the space C(S) of continuous functions on S = [a, b).
Let us denote this operator by the symbol K, too:

(Ku)(s) = IT K(s, t) u(t) dt,

We introduce the following notation:

SES. (2.1)

B = {u E Loo(T)!1 u{t)j ~ 1 a.e. on T},

where we always understand that T is equipped with ordinary Lebesgue
measure.

Now our problem certainly can be formulated as follows:

Minimize II z - y 1100 ,
yEK(B)

where z is a fixed given element in C(S) and Ii . 1100 is the uniform norm:

(2.2)

II x 1100 = max i x(s)1
sEts

foy x E C(S).
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The following existence result can be proved in a standard way, and we
therefore omit the proof (cf. [2]).

LEMMA 1. There is a y in K(B) such that

/I z - Y/loo ~ /I z - y 1100 for all y in K(B).

The topological dual of C(S) is well known to be isomorphic to the space
of measures dex induced by functions ex on S of bounded variation. We
specialize the standard characterization theorem of linear approximation
theory (cf. Holmes [3, Sect. 22]) to our case and obtain:

THEOREM 1. Y is solution of (2.2) if and only if there is a measure dex
such that

Is {z(s) - yes)} dex(s) = /I z - y 1100 ,

ryes) drx(s) = max ryes) dex(s).Js yEK(B) Js

(2.3)

(2.4)

Let us draw an important conclusion from this theorem. If y is a solution
of our problem, let U E B be such that

y = K(u).

We define

A(t) = Is K(s, t) dex(s), tE T, (2.5)

where dex is the measure appearing in Theorem 1. Using this notation, we
write (2.4) in the form

Ju(t) A(t) dt = max J u(t) A(t) dt,
T uEB T

which we call the maximum principle. It immediately implies

(2.6)

li(t) = sgn A(t) for A(t) =1= o. (2.7)

Now it is clear that we are going to prove our main result by showing that
Nt) has only a finite number of zeroes on T. This is the subject of the next
section.
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(3.1)

Let dex = dex+ - dcr be the decomposition of the measure dex into the
difference of two nonnegative measures such that supp dex+ n supp doc = 0.

Here supp denotes the support of a measure.
It is well known (cf. Holmes [3, p. 81, Exercise 33]), that (2.3) implies

supp dex+ C p+ = {s EO Slz(s) - yes) = II z - y 1100}

supp dr[ C P- = {s EO Slz(s) - ji(s) = -II z - y 1100}.

The following almost trivial lemma gives us the main tool for the proof
of our theorem.

LEMMA 2. Let z =I=- y. Then there is a partition

a = So < S1 < ... < Sm < sm+! = b

of S such that, for each Si = (Si-1 , Si), the intersection of Si with one of the
sets P+ or P- is empty.

We do not want to waste space for a proof of this simple lemma which is
just a formal statement of the fact that a continuous function on a compact
interval cannot oscillate between its absolute extrema infinitely often unless
it is constant.

COROLLARY 1. Let II z - y 1100 > 0 where y is a solution of the approxi­
mation problem. If dex is a measure satisfying (2.3), then there exists a partition
of the interval S into finitely many subintervals S1 ,... , Sm+l such that the sign
of the measure induced on the subintervals by dex alternates; i.e., for any
YEO C(S)

m+l

Ly(s) dex(s) = E L (-I)i J yes) I dex(s)l,
S i-I S.

E = +1 or -1, where it can be assumed that fs. dcx(s) =I=- 0, i = 1,... , m +- L

The preceding corollary follows immediately from the fact that dcx =I=- 0
(because of (2.3) and II z - y 1100 > 0), Eqs. (3.1) and Lemma 1.

If a measure dcx has the alternation property described above, then we
write

S-(dcx) = m

and say that dcx has exactly m sign changes on S.
Our aim is now to obtain a bound on the number of zeroes of the function

A(t) defined by (2.5).
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DEFINITION 1. (cf. [5, p. 230]). Let x = (Xl"'" x n) be a vector of real
numbers. We denote by S+(x) the maximum number of sign changes possible
in the vector X by allowing each zero to be replaced by +I or - I. The
number $+(1) of sign changes of a real valued function J(t) defined on an
ordered subset T of the real line, is sup S+(1(tI ), ... ,J(tn», where the
supremum is extended over all sets tI < t2 ·< ... < tn (ti E T; n arbitrary
but finite).

It is clear by definition of S+(1) that S+(1) < 00 implies that f has only
finitely many zeroes.

THEOREM 2. Let K(s, t) be SSR on S X T (cj. (1.5», and assume that

S-(dlX) = m.

Then
S+(\) ~ m,

where

A(t) = Is K(s, t) dOl(s), t E T.

We do not want to prove this theorem in detail because it seems to belong
to the well-known facts on SSR kernels. For sake of completeness we just
give the main idea of the proof, modelled after the one given in [5, p. 234],
for a related problem.

We define

eP(t, i) = Is. K(s, t) I dOl(s) I
,

(i = l, ... ,m + 1).

Then, for any partition tI < t2 < ... < tn, tk E T,

m+l

A(tk) = {sgn A(SI)} I (-l)i+I eP(tk , i).
i~I

The composition formula for determinants [5, p. 98] shows that the matrix
{eP(tk , i)} is SSR. The desired result follows immediately by a theorem on
the variation diminishing properties of strongly sign-regular matrices
(Gantmacher and Krein [1, p. 285]).

Collecting our results, we come to the final formulation of our theorem
announced in the introduction.

THEOREM 3. Let minUtB II z - Ku 1100 > O. If K(s, t) is SSR, then any
solution it is finitely bang-bang.

COROLLARY 2. There is a unique solution of the restricted approximation
problem.
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Proof Let U1 eF U2 be solutions. Then
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is a solution, too, which cannot be bang-bang, in contradiction to Theorem 3
if both U1 and U2 have this property.
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