Restricted Approximation by Strongly Sign-Regular Kernels: The Finite Bang-Bang Principle

KLAUS GLASHOFF

Institut für Angewandte Mathematik, Universität Hamburg, D-2000 Hamburg 13, West Germany

Communicated by Samuel Karlin

Received November 27, 1978

DEDICATED TO THE MEMORY OF P. TURÁN

1. Introduction and Description of the Result

Let K(s, t) be a real valued function defined on $S \times T$ where S = (a, b) and T = (c, d) are bounded intervals of the real line. More exact requirements on K(s, t) will be specified later. In this paper we consider the problem of best uniform approximation of a continuous function z(s) on S by functions of the form

$$y(s) = \int_{T} K(s, t) u(t) dt,$$
 (1.1)

where u(t) is subject to the inequality constraint

$$|u(t)| \leqslant 1 \quad \text{for all } t \text{ in } T. \tag{1.2}$$

Thus we wish to minimize

$$\max_{s \in S} \left| z(s) - \int_{T} K(s, t) u(t) dt \right| \tag{1.3}$$

under the restriction (1.2).

Problems of this type arise in control theory where (1.1) defines a control operator with u(t) as control function and z(s) as the "desired state" (cf. [2]).

Our main result is the following. We show that under suitable assumptions on the kernel K(s, t) there is a unique solution \bar{u} of the restricted approximation problem such that \bar{u} is *finitely bang-bang*:

$$\bar{u}(t) = \epsilon(-1)^r$$
 for $t \in [t_{r-1}, t_r); r = 1,..., n+1,$ (1.4)

for some $\epsilon = +1$ or -1, some $n \ge 1$ and some partition

$$c = t_0 < t_1 < \cdots < t_n < t_{n+1} = d$$

of the interval T.

In order to obtain such a result we require that K(s, t) is strongly sign-regular (SSR), i.e., that there exists a sequence of numbers ϵ_m either +1 or -1 such that

$$\epsilon_m K \begin{pmatrix} s_1, \dots, s_m \\ t_1, \dots, t_m \end{pmatrix} = \epsilon_m \det\{K(s_i, t_k)\} > 0$$
 (1.5)

for all $a < s_1 \cdots s_m < b$, $c < t_1 < \cdots < t_m < d$. Kernels of this type have well-known variation diminishing properties which we use in the proof of our result.

It is possible to apply our theorem to a broad class of control problems, for example to the boundary control of the heat equation. For this class of problems we can derive the finite bang-bang theorem of Karafiat [4] in a much simpler way. A detailled discussion of this result and related applications will be given elsewhere.

2. CHARACTERIZATION OF OPTIMAL SOLUTIONS

In order to give a simple presentation of the results we assume that K(s, t) is continuous on the closure of $S \times T$. This ensures that (1.1) defines a continuous linear operator from the space $L_{\infty}(T)$ of bounded measurable functions on T into the space $C(\overline{S})$ of continuous functions on $\overline{S} = [a, b]$. Let us denote this operator by the symbol K, too:

$$(Ku)(s) = \int_T K(s,t) u(t) dt, \qquad s \in S.$$
 (2.1)

We introduce the following notation:

$$B = \{u \in L_{\infty}(T)/|u(t)| \leq 1 \text{ a.e. on } T\},$$

where we always understand that T is equipped with ordinary Lebesgue measure.

Now our problem certainly can be formulated as follows:

$$\underset{y \in K(B)}{\text{Minimize}} \| z - y \|_{\infty}, \tag{2.2}$$

where z is a fixed given element in $C(\bar{S})$ and $\|\cdot\|_{\infty}$ is the uniform norm:

$$||x||_{\infty} = \max_{s \in \overline{S}} |x(s)|$$
 for $x \in C(\overline{S})$.

The following existence result can be proved in a standard way, and we therefore omit the proof (cf. [2]).

LEMMA 1. There is a \bar{v} in K(B) such that

$$||z - \overline{y}||_{\infty} \leq ||z - y||_{\infty}$$
 for all y in K(B).

The topological dual of $C(\overline{S})$ is well known to be isomorphic to the space of measures $d\alpha$ induced by functions α on \overline{S} of bounded variation. We specialize the standard characterization theorem of linear approximation theory (cf. Holmes [3, Sect. 22]) to our case and obtain:

Theorem 1. \bar{y} is solution of (2.2) if and only if there is a measure $d\alpha$ such that

$$\int_{\mathfrak{S}} \{z(s) - \bar{y}(s)\} d\alpha(s) = \|z - \bar{y}\|_{\infty}, \qquad (2.3)$$

$$\int_{S} \overline{y}(s) d\alpha(s) = \max_{y \in K(B)} \int_{S} y(s) d\alpha(s).$$
 (2.4)

Let us draw an important conclusion from this theorem. If \bar{y} is a solution of our problem, let $\bar{u} \in B$ be such that

$$\bar{y} = K(\bar{u}).$$

We define

$$\lambda(t) = \int_{S} K(s, t) \, d\alpha(s), \qquad t \in T, \tag{2.5}$$

where $d\alpha$ is the measure appearing in Theorem 1. Using this notation, we write (2.4) in the form

$$\int_{T} \overline{u}(t) \lambda(t) dt = \max_{u \in B} \int_{T} u(t) \lambda(t) dt, \qquad (2.6)$$

which we call the maximum principle. It immediately implies

$$\bar{u}(t) = \operatorname{sgn} \lambda(t) \quad \text{for } \lambda(t) \neq 0.$$
 (2.7)

Now it is clear that we are going to prove our main result by showing that $\lambda(t)$ has only a finite number of zeroes on T. This is the subject of the next section.

3. THE FINITE BANG-BANG PRINCIPLE

Let $d\alpha = d\alpha^+ - d\alpha^-$ be the decomposition of the measure $d\alpha$ into the difference of two nonnegative measures such that supp $d\alpha^+ \cap \text{supp } d\alpha^- = \varnothing$. Here supp denotes the support of a measure.

It is well known (cf. Holmes [3, p. 81, Exercise 33]), that (2.3) implies

$$\sup d\alpha^{+} \subset P^{+} = \{ s \in \overline{S}/z(s) - \overline{y}(s) = ||z - \overline{y}||_{\infty} \}$$

$$\sup d\alpha^{-} \subset P^{-} = \{ s \in \overline{S}/z(s) - \overline{y}(s) = -||z - \overline{y}||_{\infty} \}.$$
(3.1)

The following almost trivial lemma gives us the main tool for the proof of our theorem.

LEMMA 2. Let $z \neq \bar{y}$. Then there is a partition

$$a = s_0 < s_1 < \cdots < s_m < s_{m+1} = b$$

of S such that, for each $S_i = (s_{i-1}, s_i)$, the intersection of S_i with one of the sets P^+ or P^- is empty.

We do not want to waste space for a proof of this simple lemma which is just a formal statement of the fact that a continuous function on a compact interval cannot oscillate between its absolute extrema infinitely often unless it is constant.

COROLLARY 1. Let $||z - \bar{y}||_{\infty} > 0$ where \bar{y} is a solution of the approximation problem. If $d\alpha$ is a measure satisfying (2.3), then there exists a partition of the interval S into finitely many subintervals $S_1, ..., S_{m+1}$ such that the sign of the measure induced on the subintervals by $d\alpha$ alternates; i.e., for any $y \in C(\bar{S})$

$$\int_{S} y(s) d\alpha(s) = \epsilon \sum_{i=1}^{m+1} (-1)^{i} \int_{S_{i}} y(s) |d\alpha(s)|,$$

 $\epsilon=+1$ or -1, where it can be assumed that $\int_{\mathcal{S}_i}d\alpha(s)\neq 0,\,i=1,...,m+1$.

The preceding corollary follows immediately from the fact that $d\alpha \neq 0$ (because of (2.3) and $||z - \bar{y}||_{\infty} > 0$), Eqs. (3.1) and Lemma 1.

If a measure $d\alpha$ has the alternation property described above, then we write

$$S^{-}(d\alpha) = m$$

and say that $d\alpha$ has exactly m sign changes on S.

Our aim is now to obtain a bound on the number of zeroes of the function $\lambda(t)$ defined by (2.5).

DEFINITION 1. (cf. [5, p. 230]). Let $x = (x_1, ..., x_n)$ be a vector of real numbers. We denote by $S^+(x)$ the maximum number of sign changes possible in the vector x by allowing each zero to be replaced by +1 or -1. The number $S^+(f)$ of sign changes of a real valued function f(t) defined on an ordered subset T of the real line, is $\sup S^+(f(t_1),...,f(t_n))$, where the supremum is extended over all sets $t_1 < t_2 < \cdots < t_n$ ($t_i \in T$; n arbitrary but finite).

It is clear by definition of $S^+(f)$ that $S^+(f) < \infty$ implies that f has only finitely many zeroes.

THEOREM 2. Let K(s, t) be SSR on $S \times T$ (cf. (1.5)), and assume that

$$S^{-}(d\alpha)=m.$$

Then

$$S^+(\lambda) \leqslant m$$
,

where

$$\lambda(t) = \int_{S} K(s, t) d\alpha(s), \quad t \in T.$$

We do not want to prove this theorem in detail because it seems to belong to the well-known facts on SSR kernels. For sake of completeness we just give the main idea of the proof, modelled after the one given in [5, p. 234], for a related problem.

We define

$$\phi(t,i) = \int_{S_4} K(s,t) |d\alpha(s)|$$
 $(i = 1,..., m + 1).$

Then, for any partition $t_1 < t_2 < \cdots < t_n$, $t_k \in T$,

$$\lambda(t_k) = \{ \operatorname{sgn} \lambda(S_1) \} \sum_{i=1}^{m+1} (-1)^{i+1} \phi(t_k, i).$$

The composition formula for determinants [5, p. 98] shows that the matrix $\{\phi(t_k, i)\}$ is SSR. The desired result follows immediately by a theorem on the variation diminishing properties of strongly sign-regular matrices (Gantmacher and Krein [1, p. 285]).

Collecting our results, we come to the final formulation of our theorem announced in the introduction.

THEOREM 3. Let $\min_{u \in B} ||z - Ku||_{\infty} > 0$. If K(s, t) is SSR, then any solution \bar{u} is finitely bang-bang.

COROLLARY 2. There is a unique solution of the restricted approximation problem.

Proof. Let $u_1 \neq u_2$ be solutions. Then

$$\bar{u} = \frac{1}{2}u_1 + \frac{1}{2}u_2$$

is a solution, too, which cannot be bang-bang, in contradiction to Theorem 3 if both u_1 and u_2 have this property.

REFERENCES

- F. R. GANTMACHER AND M. G. KREIN, "Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme," Akademie-Verlag, Berlin, 1960.
- K. Glashoff and N. Weck, Boundary control of parabolic differential equations in arbitrary dimensions: Supremum-norm problems. SIAM J. Control Optimization 14, No. 4 (1976), 662-681.
- 3. R. B. Holmes, "A Course on Optimization and Best approximation," Lecture Notes in Mathematics No. 257, Springer-Verlag, Berlin/Heidelberg/New York, 1972.
- 4. A. KARAFIAT, The problem of the number of switches in parabolic equations with control. *Ann. Pol. Math.* 34 (1977), 289-316.
- 5. S. Karlin, "Total Positivity," Vol. I, Stanford Univ. Press, Stanford, California, 1968.